Variations trend of climate parameters affecting on grape growth (Case study: Khorasan Razavi Province)

Document Type : Scientific and Research


1 Ph.D. Candidate of Agroclimatology, Faculty of Geography and Environmental Sciences, Hakim Sabzevari University, Sabzevar, Iran

2 Associate Professor, Faculty of Geography and Environmental Science, Hakim Sabzevari University, Sabzevar, Iran


The present study aims to investigate the structure and trend of climate parameters affecting grape growth in Khorasan Razavi (north eastern Iran) in the period of 1991-2015 in 8 weather stations. Effective climate elements such as temperature, precipitation, the number of hot days, the number of frost days, sunshine hours and parameters such as maximum temperature, annualaverageannual average of temperature and precipitation, the growing season and phenological stages were calculated, and their effects on the quality of grapes were assessed. In general, Thethe results indicatedd that in general, the warming in the growing season with a significant increase in great accumulation indices, particularly the increase in the maximum temperature, mean temperature, the number of days with maximum temperature bigger than 90th percentile, and the number of days with the maximum temperature greater than 30 °C. Precipitation during the growth period particularly in the germination and blooming for all stations is reduced. This issue indicates potential soil moisture stress during this vital growth stage. Analyzing the crop evapotranspiration (ETC) indicated that because of warming, demands for water in the region have increased from 10% to 20% percent. These observations along with the continuation of global warming indicate that grape growth with favorable quality is impossible without adopting adaptations to the future climate changes.


Alexandersson, H. (1986). A homogeneity test applied to precipitation data. Journal of climatology, 6(6), 661-675.
Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO, Rome, 300(9), D05109.
Amerine, M. A., & Winkler, A. J. (1944). Composition and quality of musts and wines of California grapes: University of California Berkeley.
Blanco-Ward, D., Queijeiro, J. G., & Jones, G. V. (2015). Spatial climate variability and viticulture in the Miño River Valley of Spain. VITIS-Journal of Grapevine Research, 46(2), 63.
Boote, K. J., & Allen Jr, L. H. (1990). Global climate change and US agriculture. Nature, 345(17), 219-224.
Bowen, C. R., & Hollinger, S. E. (2004). Model to determine suitability of a region for a large number of crops: Illinois State Water Survey.
Campos-Vargas, R., Becerra, O., Baeza-Yates, R., Cambiazo, V., González, M., Meisel, L., . . . Defilippi, B. G. (2006). Seasonal variation in the development of chilling injury in ‘O’Henry’peaches. Scientia Horticulturae, 110(1), 79-83.
Christy, J. R., Norris, W. B., Redmond, K., & Gallo, K. P. (2006). Methodology and results of calculating central California surface temperature trends: evidence of human-induced climate change? Journal of Climate, 19(4), 548-563.
Coombe, B. (1986). Influence of temperature on composition and quality of grapes. Paper presented at the Symposium on Grapevine Canopy and Vigor Management, XXII IHC 206.
Dinpajoh, Y., & Movaheddanesh, A. (1996). Determination of favorable areas for dryland grains production considering the monthly rainfall of East Azarbaijan, West and Ardebil. Nivar, 3, 25-36.
Guo, L., Dai, J., Wang, M., Xu, J., & Luedeling, E. (2015). Responses of spring phenology in temperate zone trees to climate warming: a case study of apricot flowering in China. Agricultural and Forest Meteorology, 201, 1-7.
Heidari, H., & Saeedabadi, R. (2009). Multi-criteria  climate classification of areas of  viticulture in Iran. The study of physical geography, 68, 59-70.
Hidalgo, L. H. (2002). Tratado de viticultura general: Mundi-Prensa.
Houghton, J. T. (1996). Climate change 1995: The science of climate change: contribution of working group I to the second assessment report of the Intergovernmental Panel on Climate Change (Vol. 2): Cambridge University Press.
Huglin, P. (1978). Nouveau mode d'évaluation des possibilités héliothermiques d'un milieu viticole. Comptes rendus des seances.
Jackson, D., & Cherry, N. (1988). Prediction of a district's grape-ripening capacity using a latitude-temperature index (LTI). American Journal of Enology and Viticulture, 39(1), 19-28.
Jackson, D., & Lombard, P. (1993). Environmental and management practices affecting grape composition and wine quality-a review. American Journal of Enology and Viticulture, 44(4), 409-430.
Jahad Agriculture, M. (2015). Statistics of the  Ministry of Jahad Agriculture Iran. Retrieved from Ministry of Jahad Agriculture Iran:
Jones, G., Duchene, E., Tomasi, D., Yuste, J., Braslavska, O., Schultz, H., . . . Perruchot, C. (2005). Changes in European winegrape phenology and relationships with climate. Paper presented at the XIV International GESCO Viticulture Congress, Geisenheim, Germany, 23-27 August, 2005.
Khokhar, K. M., Hadley, P., & Pearson, S. (2007). Effect of cold temperature durations of onion sets in store on the incidence of bolting, bulbing and seed yield. Scientia Horticulturae, 112(1), 16-22.
Khoshroo, A., Mulwa, R., Emrouznejad, A., & Arabi, B. (2013). A non-parametric Data Envelopment Analysis approach for improving energy efficiency of grape production. Energy, 63, 189-194.
Kliewer, W. M., & Torres, R. E. (1972). Effect of controlled day and night temperatures on grape coloration. American Journal of Enology and Viticulture, 23(2), 71-77.
Lebon, E. (2002). Changements climatiques: quelles conséquences pour la viticulture. CR 6ième Rencontres Rhodaniennes, 31-36.
Mattheis, J. P., & Fellman, J. K. (1999). Preharvest factors influencing flavor of fresh fruit and vegetables. Postharvest biology and technology, 15(3), 227-232.
Nazemosadat, M., & Cordery, I. (2000). On the relationships between ENSO and autumn rainfall in Iran. International Journal of Climatology, 20(1), 47-61.
Parry, M. L., Rosenzweig, C., Iglesias, A., Livermore, M., & Fischer, G. (2004). Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Global Environmental Change, 14(1), 53-67.
Quanta, C. A. (1975). Establishing and activating agricultural research stations (Guidelines for Agricultural Meteorological Requirements and Restrictions, 15 main products of Iran). Retrieved from National Meteorological Organization:
Ramos, M., Jones, G., & Martínez-Casasnovas, J. (2008). Structure and trends in climate parameters affecting winegrape production in northeast Spain. Climate Research, 38(1), 1-15.
Rapisarda, P., Bellomo, S. E., & Intelisano, S. (2001). Storage temperature effects on blood orange fruit quality. Journal of agricultural and food chemistry, 49(7), 3230-3235.
Riou, C. (1994). Le determinisme climatique de la maturation du raisin: application au zonage de la teneru en sucre dans la Communaute Europeenne: Office des Publications Officielles des Communautés Européennes.
Rosenzweig, C., & Parry, M. L. (1994). Potential impact of climate change on world food supply. Nature, 367(6459), 133-138.
Sameshima, R., Hirota, T., & Hamasaki, T. (2007). Mapping of first-frost days and risk of frost damage to soybeans. JOURNAL OF AGRICULTURAL METEOROLOGY-TOKYO-, 63(1), 25.
Sansavini, S., & Lugli, S. (2005). Sweet cherry breeding programs in Europe and Asia. Paper presented at the V International Cherry Symposium 795.
Seinfeld, J. H., & Pandis, S. N. (2016). Atmospheric chemistry and physics: from air pollution to climate change: John Wiley & Sons.
Sivakumar, M. (1988). Predicting rainy season potential from the onset of rains in Southern Sahelian and Sudanian climatic zones of West Africa. Agricultural and Forest Meteorology, 42(4), 295-305.
Siwar, C., Alam, M. M., Murad, M. W., & Al-Amin, A. Q. (2009). A review of the linkages between climate change, agricultural sustainability and poverty in Malaysia. International Review of Business Research Papers, 5(6), 309-321.
Slater, R., Peskett, L., Ludi, E., & Brown, D. (2007). Climate change, agricultural policy and poverty reduction–how much do we know. Natural resource perspectives, 109, 1-6.
Teixeira, E. I., Fischer, G., van Velthuizen, H., Walter, C., & Ewert, F. (2013). Global hot-spots of heat stress on agricultural crops due to climate change. Agricultural and Forest Meteorology, 170, 206-215.
Tonietto, J., & Carbonneau, A. (2004). A multicriteria climatic classification system for grape-growing regions worldwide. Agricultural and Forest Meteorology, 124(1), 81-97.
Visser, M. E. (2008). Keeping up with a warming world; assessing the rate of adaptation to climate change. Proceedings of the Royal Society of London B: Biological Sciences, 275(1635), 649-659.
White, M. A., Diffenbaugh, N., Jones, G. V., Pal, J., & Giorgi, F. (2006). Extreme heat reduces and shifts United States premium wine production in the 21st century. Proceedings of the National Academy of Sciences, 103(30), 11217-11222.
Wielgolaski, F. (2003). Climatic factors governing plant phenological phases along a Norwegian fjord. International Journal of Biometeorology, 47(4), 213-220.
Winkler, A. J. (1962). General viticulture: Univ of California Press.
Winkler, A. J., Cook, J. A., Kliewer, W. M., & Lider, L. A. (1974). Development and composition of grapes. General viticulture. University of California Press, Berkeley, 138-196.