The sand dunes migration patterns in Mesr Erg region using satellite imagery analysis and wind data

Document Type : Scientific and Research


1 Associate Professor, Factualy of Geography, University of Tehran, Iran

2 Ph.D Candidate Geomorphology, University of Tehran, Iran

3 Ph.D Candidate in Remote Sensing, University of Technology, Malaysia


Understanding the situation, behavior and the nature of sand dunes and also their location, transport and deposition are very important. On the other hand, the importance of sand dunes is due to the impacts that they have on water and soil resources, flora and fauna and human infrastructure. This study, looks at the development patterns of sand dunes in Mesr erg region. In the first part, data and satellite imagery were analyzed with different time intervals. In the second part, wind data of Ardestān, Isfahan, Kashan, Natanz, Khoor and Byabanak stations were studied to monitor the status of the wind regime, and its impact on the dynamics of the Mesr sand dunes. The results indicate that the area affected by the prevailing winds from Northwest Southeast direction during the cold days during the entire year, so that major translocations fit this trend in the erg surface. However, average Migration over the dunes was measured 8 meters per year. During the summer, following the establishment of a low-pressure system over the Dasht-e Kavir, winds from the Northeast direction result in irregularities in the sand dunes morphology, therefore evidence of these irregularities, is the dunes Migration to the Southwest direction.


  1. Anderson, R.S., Haff, P.K. (1988). Simulation of aeolian saltation. Science 241, 820– 823.
  2. Bagnold, R.A. (1941). The physics of blown sand and desert dunes. Chapman and Hall, London, pp. 104–106.
  3. Baitis, E.; Kocurek, G.; Smith, V.; Mohrig, D.; Ewing, R.C.; Peyret, A.P.B. (2014). Definition and origin of the dune-field pattern at White Sands, New Mexico. Aeolian Research, 15: 269-287. Buckley, R.C., 1987. The effect of sparse vegetation on the transport of dune sand by wind. Nature 325, 426–428.
  4. Buckley, R.C. (1987). The effect of sparse vegetation on the transport of dune sand by wind. Nature, 325: 426-428.
  5. Delgado-Fernandez, I.; Davidson-Arnott, R. (2011). Meso-scale aeolian sediment input to coastal dunes: the nature of aeolian transport events. Geomorphology, 126: 217-232.
  6. Dong, Z.B.; Wang, T.; Wang, X.M. (2004). Geomorphology of the megadunes in the Badain Jaran desert. Geomorphology, 60: 191-203.
  7. Fryberger, S.G.; Dean, G. (1979). Dune forms and wind regime. U.S. Geological Survey Professional Paper 1052–F, pp. 137-169.
  8. Ghadiry M.; Koch B. (2010). Developing a monitoring system for sand dunes migration in Dakhla Oasis, Western Desert, Egypt. Remote Sensing for Science, Education, Rainer Reuter (Editor) and Natural and Cultural Heritage.
  9. Gillies, J.A.; Lancaster, N. (2013). Large roughness element effects on sand transport, Oceano Dunes, California. Earth Surf. Process. Landf., 38: 785-792.
  10. Gillies, J.A.; Nickling, W.G.; King, J. (2006). Aeolian sediment transport through large patches of roughness in the atmospheric inertial sublayer. J. Geophys. Res. 111, F02006.
  11. Gillette, D.A.; Niemeyer, T.C.; Helm, P.J. (2001). Supply-limited horizontal sand drift at an ephemerally crusted, unvegetated saline playa. J. Geophys. Res., 106: 18085-18098.
  12. Hamdan, M.A.; Refaat, A.A.; Abdel Wahed, M. (2016). Morphologic characteristics and migration rate assessment of Barchanss dunes in the Southeastern Western Desert of Egypt. Geomorphology, 257; 57-74.
  13. Hermas, E.; Leprince, S.; El-Magd., I.A. (2012). Retrieving sand dune movements using sub-pixel correlation of multi-temporal optical remote sensing imagery, northwest Sinai Peninsula, Egypt. Remote Sensing of Environment, 121; 51-60.
  14. Hesp, P.; Davidson-Arnott, R.; Walker, I.; Ollerhead, J. (2005). Flow dynamics over a foredune at Prince Edward Island Canada. Geomorphology, 65: 71-84.
  15. Ihab, N.L.M.; Verstraeten, G. (2012). Analyzing dune dynamics at the dune-field scale based on multi-temporal analysis of Landsat-TM images. Remote Sensing of Environment, 119: 105-117.
  16. Iversen, J.D.; Rasmussen, K.R. (1994). Effect of slope on saltation threshold. Sedimentology, 41: 721-728.
  17. Jackson, N.L.; Nordstrom, K.F. (1998). Aeolian transport of sediment on a beach during and after rainfall, Wildwood, NJ, USA. Geomorphology, 22: 151-157.
  18. Kuriyama, Y.; Mochizuki, N.; Nalashima, T. (2005). Influence of vegetation on Aeolian sand transport rate from a backshore to a foreshore at Hasaki, Japan. Sedimentology, 52: 1123-1132.
  19. Lancaster, N. (1985). Winds and sand movements in the Namib sand sea. Earth Surf. Proc. Land, 10: 607-619.
  20. Lancaster, N.; Nickling, W.G.; Gillies, J.A. (2010). Sand transport by wind on complex surfaces: field studies in the McMurdo Dry Valleys, Antarctica. J. Geophys. Res., 115, F03027.
  21. Lei, J.Q.; Wang, X.Q.; Wang, D. (2003). The formation of the blown sand disaster to the Tarim desert highway, Xinjiang, China. Arid Zone Res., 20(1): 1-6. [in Chinese]
  22. Leys, J.F.; Eldridge, D.J. (1991). Influence of cryptogamic crust disturbance to wind erosion on sand and loam rangeland soils. Earth Surf. Proc. Land., 23(11): 963-974.
  23. Liu, L.Y.; Skidmore, E.; Hasi, E.; Wagner, L.; Tatarko, J. (2005). Dune sand transport as influenced by wind directions, velocity and frequencies in the Ordos Plateau, China. Geomorphology, 67: 283-297.
  24. Maghsoudi, M.; Yamani, M.; Khosh Akhlagh, F.; Shahriar, A. (2013). The wind role and weather patterns in locating and direction of Dasht-e Kavir sand dunes. The Study of Physical Geography, 2: 21-38.
  25. Mahmoudi, F. (2002). Distribution of important Ergs Iran. The Final Report of the Research Project of the Institute of Forest and Rangelands, Tehran.
  26. Mashhadi, N.; Ahmadi, H.; Ekhtesasi, M.R.; Feiznia, S.; Feghhi, G. (2007). Analysis of sand dunes to determine wind direction and detect sand source sites (case study: Khartooran Erg, Iran). BIABAN, 12: 69-75.
  27. Mousavi, H.; Vali, A.A.; Mo'ayyeri, M. (2010). The impact of Barchans morphometric parameters on the amount of its displacement (Case study: Chah-e Jam Erg). Geography and Environmental Planning, 2: 101-118.
  28. Sherman, D. J., & Li, B. (2012). Predicting aeolian sand transport rates: A reevaluation of models. Aeolian Research, 3(4), 371-378.
  29. Sparavigna, A.C. (2013). A study of moving sand dunes by means of satellite images. International Journal of Sciences, 2.
  30. Tsoar, H. (2005). Sand dunes mobility and stability in relation to climate. Physical Journals, 357: 50-56.
  31. Udo, K.; Kuriyama, Y.; Jackson, D.W. (2008). Observations of wind-blown sand under various meteorological conditions at a beach. J. Geophys. Res. 113, F04008. http://dx.doi. org/10.1029/2007JF000936.
  32. Wiggs, G.F.S.; Atherton, R.J.; Baird, A.J. (2004). Thresholds of aeolian sand transport: establishing suitable values. Sedimentology, 51: 95-108.
  33.  Yamani, M. (2015). The impact of convergent winds on the morphology and the establishment of Kavir desert sand dunes. Iranian Quaternary Quarterly, 1: 99-112.
  34. Yang, Y.; Qu, Z.; Shi, P.; Liu, L.; Zhang, G.; Tang, Y.; ... & Shen, L. (2014). Wind regime and sand transport in the corridor between the Badain Jaran and Tengger deserts, central Alxa Plateau, China. Aeolian Research, 12: 143-156.
  35. Yurk, B.P.; Hansen, E.C.; Hazle, D. (2013). A deadtime model for the calibration of impact sensors with an application to a modified miniphone sensor. Aeolian Res., 11: 43-54.
  36. Zhang, Z.; Dong, Z.; Li, C. (2015). Wind regime and sand transport in China’s Badain Jaran Desert. Aeolian Research, 17: 1-13.
  37. Zhu, Z.; Wu, Z.; Liu, S.; Di, X. (1980). An outline of Chinese deserts. Science Press, Beijing. [in Chinese]
  38. Zou, X.Y.; Wang, Z.L.; Hao, Q.Z.; Zhang, C.L.; Liu, Y.Z.; Dong, G.R. (2001). The distribution of velocity and energy of saltating sand grains in a wind tunnel. Geomorphology, 36: 155-165.