Evaluation of human thermal comfort using UTCI index: case study Khorasan Razavi, Iran

Document Type : Scientific and Research


1 Assistant Professor of Climatology, Department of Physical Geography, Faculty of Geography and Environmental Science, Hakim Sabzevari University, Sabzevar, Iran

2 PhD student in urban climatology, Department of Physical Geography, Faculty of Geography and Environmental Science, Hakim Sabzevari University, Sabzevar, Iran

3 M.A. in Geomorphology, Department of Physical Geography, Faculty of Geography and Environmental Science, Hakim Sabzevari University, Sabzevar, Iran

4 PhD Student in Urban Climatology, Department of Physical Geography, Faculty of Geography and Environmental Science, Hakim Sabzevari University, Sabzevar, Iran


The Universal Thermal Climate Index (UTCI) addresses these shortcomings by using an advanced thermo-physiological model. The aim of this study was to investigate and prepare zoning of thermal comfort condition using UTCI. Meteorological data including temperature, wind speed, cloudiness and relative humidity were obtained on a daily time scale from 10 synoptic stations during (2004-2013) period. For the calculation of UTCI index Ryman and Bioklima softwares were used. Then the relationship between UTCI and elevation was investigated and by using Digital Elevation Model (DEM), UTCI zoning was prepared. The results showed that there is a strong inverse relationship between UTCI and elevation. Spatial and temporal zoning maps showed the highest values of UTCI were observed in the northeastern part of province (Sarakhs station) on July. In the cold months the lowest values of UTCI has been recorded in January. Extreme heat stress was observed across the East, South and South-East of Khorasan Razavi province. While cold stress has been more dominant In the Central and northern areas of the province. Generally there is a significant correlation between the thermal comfort and elevation, so that thermal stresses are often observed in the low regions in the warm period of the year.


  1. Abdel-Ghany, A., Al-Helal, I., Shady, M. (2013). Human thermal comfort and heat stress in an outdoor urban arid environment: a case study. Advances in Meteorology
  2. Anderson, B.G., Bell, M.L. (2009). Weather-related mortality: how heat, cold, and heat waves affect mortality in the United States. Epidemiology (Cambridge, Mass.), 20(2): 205.
  3. Blażejczyk, K. (2011). Assessment of regional bioclimatic contrasts in Poland. Miscellanea Geographica-Regional Studies on Development, 15: 79-91.
  4. Błażejczyk, K. (2004). Radiation balance in man in various meteorological and geographical conditions. Geographia Polonica, 77(1): 63-76.
  5. Błażejczyk, K. (2011). Mapping of UTCI in local scale (the case of Warsaw). Prace i Studia Geograficzne WGSR UW, 47, 275-283.
  6. Blazejczyk, K., Epstein, Y., Jendritzky, G., Staiger, H., Tinz, B. (2012). Comparison of UTCI to selected thermal indices. International journal of biometeorology, 56(3): 515-535.
  7. Blazejczyk, K., Jendritzky, G., Bröde, P., Fiala, D., Havenith, G., Epstein, Y., ... Kampmann, B. (2013). An introduction to the Universal Thermal Climate Index (UTCI). Geographia Polonica, 86(1): 5-10.
  8. Bleta, A., Nastos, P.T., Matzarakis, A. (2014). Assessment of bioclimatic conditions on Crete Island, Greece. Regional Environmental Change, 14(5): 1967-1981.
  9. Bröde, P., Fiala, D., Błażejczyk, K., Holmér, I., Jendritzky, G., Kampmann, B., ... Havenith, G. (2012). Deriving the operational procedure for the Universal Thermal Climate Index (UTCI). International journal of biometeorology, 56(3): 481-494.
  10. Broede, P., Blazejczyk, K., Fiala, D., Havenith, G., Holmer, I., Jendritzky, G., ... Kampmann, B. (2013). The universal thermal climate index UTCI compared to ergonomics standards for assessing the thermal environment. Industrial health, 51(1): 16-24.
  11. Burkart, K., Schneider, A., Breitner, S., Khan, M.H., Krämer, A., Endlicher, W. (2011). The effect of atmospheric thermal conditions and urban thermal pollution on all-cause and cardiovascular mortality in Bangladesh. Environmental Pollution, 159(8): 2035-2043.
  12. Farajzadeh, H., Saligheh, M., Alijani, B., Matzarakis, A. (2015). Comparison of selected thermal indices in the northwest of Iran. Natural Environment Change, 1(1): 1-20.
  13. Fiala, D., Havenith, G., Bröde, P., Kampmann, B., Jendritzky, G. (2012). UTCI-Fiala multi-node model of human heat transfer and temperature regulation. International journal of biometeorology, 56(3): 429-441.
  14. Fiala, D., Psikuta, A., Jendritzky, G., Paulke, S., Nelson, D.A., van Marken Lichtenbelt, W.D., Frijns, A.J. (2010). Physiological modeling for technical, clinical and research applications. Front Biosci S, 2: 939-968.
  15. Fiala, D., Bunzl, A., Lomas, K.J., Cropper, P.C., Schlenz, D. (2004). A new simulation system for predicting human thermal and perceptual responses in vehicles. In D. Schlenz (Ed.), PKW-Klimatisierung III: Klimakonzepte, Regelungsstrategien und Entwicklungsmethoden, Haus der Technik Fachbuch, Expert Verlag, Renningen, Haus der Technik Fachbuch, 27 ed., Vol. 27: 147-162.
  16. Fiala, D., Lomas, K.J., Stohrer, M. (2001). Computer prediction of human thermoregulatory and temperature responses to a wide range of environmental conditions. International Journal of Biometeorology, 45(3): 143-159.
  17. Fiala, D., Lomas, K.J., Stohrer, M. (1999). A computer model of human thermoregulation for a wide range of environmental conditions: the passive system. Journal of Applied Physiology, 87(5): 1957-1972.
  18. Gabriel, K.M., Endlicher, W.R. (2011). Urban and rural mortality rates during heat waves in Berlin and Brandenburg, Germany. Environmental Pollution, 159(8): 2044-2050.
  19. Havenith, G. (2001). Individualized model of human thermoregulation for the simulation of heat stress response. Journal of Applied Physiology, 90(5): 1943-1954.
  20. Havenith, G., Fiala, D., Błazejczyk, K., Richards, M., Bröde, P., Holmér, I., ... Jendritzky, G. (2012). The UTCI-clothing model. International Journal of Biometeorology, 56(3), 461-470.
  21. Höppe, P. (1999). The physiological equivalent temperature–a universal index for the biometeorological assessment of the thermal environment. International Journal of Biometeorology, 43(2): 71-75.
  22. Huizenga, C., Hui, Z., Arens, E. (2001). A model of human physiology and comfort for assessing complex thermal environments. Building and Environment, 36(6), 691-699.
  23. Jendritzky, G., de Dear, R., Havenith, G. (2012). UTCI—Why another thermal index? International journal of biometeorology, 56(3): 421-428.
  24. Jendritzky, G., Havenith, G., Weihs, P., Batchvarova, E. (2009). Towards a Universal Thermal Climate Index UTCI for assessing the thermal environment of the human being. Final Report COST Action, 730: 1-26.
  25. Jendritzky, G., Havenith, G., Weihs, P., Batschvarova, E., DeDear, R. (2008). The universal thermal climate index UTCI–goal and state of COST Action 730. Paper presented at the 18th International Conference on Biometeorology, Tokyo.
  26. Jendritzky, G., Staiger, H., Bucher, K., Graetz, A., Laschewski, G. (2000). The perceived temperature: the method of the Deutscher Wetterdienst for the assessment of cold stress and heat load for the human body. Paper presented at the Internet workshop on Windchill.
  27. Kampmann, B., Bröde, P., Havenith, G., Jendritzky, G. (2008). Der Entwicklungsstand des klimatischen Belastungs-Index UTCI (Universal Thermal Climate Index). Paper presented at the Produkt-und Produktions-Ergonomie-Aufgabe für Entwickler und Planer, 54. Kongress der Gesellschaft für Arbeitswissenschaft. GfA-Press, Dortmund.
  28. Kántor, N., Unger, J. (2011). The most problematic variable in the course of human-biometeorological comfort assessment—the mean radiant temperature. Central European Journal of Geosciences, 3(1): 90-100.
  29. Kim, Y.M., Kim, S., Cheong, H.K., Kim, E.H. (2011). Comparison of temperature indexes for the impact assessment of heat stress on heat-related mortality. Environmental health and toxicology, 26.
  30. Konz, S., Hwang, C., Dhiman, B., Duncan, J., Masud, A. (1977). An experimental validation of mathematical simulation of human thermoregulation. Computers in biology and medicine, 7(1): 71-82.
  31. Kuklane, K., Gao, C., Holmér, I., Giedraitytė, L., Bröde, P., Candas, V., ... Havenith, G. (2007). Calculation of clothing insulation by serial and parallel methods: effects on clothing choice by IREQ and thermal responses in the cold. International Journal of Occupational Safety and Ergonomics, 13(2): 103-116.
  32. Laschewski, G., Jendritzky, G. (2002). Effects of the thermal environment on human health: an investigation of 30 years of daily mortality data from SW Germany. Climate research, 21(1): 91-103.
  33. Lemons, D. (1984). Theory and Experiment for the Effect of Vascular iicrostructure on Surface Tissue Heat Transfer—Part II: Model Formulation and Solution. Journal of Biomechanical Engineering, 106, 331.
  34. Lomas, K., Fiala, D., Stohrer, M. (2003). First principles modeling of thermal sensation responses in steady-state and transient conditions. ASHRAE Transactions, 109(1): 179-186.
  35. Matzarakis, A., Muthers, S., Koch, E. (2011). Human biometeorological evaluation of heat-related mortality in Vienna. Theoretical and Applied Climatology, 105(1-2): 1-10.
  36. Matzarakis, A., Mayer, H., Iziomon, M.G. (1999). Applications of a universal thermal index: physiological equivalent temperature. International journal of biometeorology, 43(2):76-84.
  37. Mayer, H., Höppe, P. (1987). Thermal comfort of man in different urban environments. Theoretical and Applied Climatology, 38(1): 43-49.
  38. McGregor, G.R. (2012). Human biometeorology. Progress in Physical Geography, 36(1): 93-109.
  39. Milewski, P. (2013). Application of the UTCI to the local bioclimate of Poland’s Ziemia Kłodzka Region. Geographia Polonica, 86(1): 47-54.
  40. Pappenberger, F., Jendritzky, G., Staiger, H., Dutra, E., Di Giuseppe, F., Richardson, D., Cloke, H. (2014). Global forecasting of thermal health hazards: the skill of probabilistic predictions of the Universal Thermal Climate Index (UTCI). International journal of biometeorology, 1-13.
  41. Parsons, K. (2014). Human thermal environments: the effects of hot, moderate, and cold environments on human health, comfort, and performance: Crc Press.
  42. Psikuta, A., Fiala, D., Laschewski, G., Jendritzky, G., Richards, M., Błażejczyk, K., ... Havenith, G. (2012). Validation of the Fiala multi-node thermophysiological model for UTCI application. International journal of biometeorology, 56(3): 443-460.
  43. Richards, M., & Fiala, D. (2004). Modelling fire-fighter responses to exercise and asymmetric infrared radiation using a dynamic multi-mode model of human physiology and results from the Sweating Agile thermal Manikin. European journal of applied physiology, 92(6), 649-653.
  44. Schreier, S.F., Suomi, I., Bröde, P., Formayer, H., Rieder, H. E., Nadeem, I., ... Weihs, P. (2013). The uncertainty of UTCI due to uncertainties in the determination of radiation fluxes derived from numerical weather prediction and regional climate model simulations. International journal of biometeorology, 57(2), 207-223.
  45. Staiger, H., Laschewski, G., Grätz, A. (2012). The perceived temperature–a versatile index for the assessment of the human thermal environment. Part A: scientific basics. International journal of biometeorology, 56(1): 165-176.
  46. Stolwijk, J.A. (1980). Mathematical models of thermal regulation. Annals of the New York Academy of Sciences, 335(1): 98-106.
  47. Tanabe, S.I., Kobayashi, K., Nakano, J., Ozeki, Y., Konishi, M. (2002). Evaluation of thermal comfort using combined multi-node thermoregulation (65MN) and radiation models and computational fluid dynamics (CFD). Energy and Buildings, 34(6): 637-646.
  48. Weihs, P., Staiger, H., Tinz, B., Batchvarova, E., Rieder, H., Vuilleumier, L., . . . Jendritzky, G. (2012). The uncertainty of UTCI due to uncertainties in the determination of radiation fluxes derived from measured and observed meteorological data. International journal of biometeorology, 56(3), 537-555.
  49. Weinbaum, S., Jiji, L., Lemons, D. (1984). Theory and experiment for the effect of vascular microstructure on surface tissue heat transfer—Part I: Anatomical foundation and model conceptualization. Journal of Biomechanical Engineering, 106(4): 321-330.
  50. Wissler, E. (1985). Mathematical simulation of human thermal behavior using whole body models. Heat transfer in medicine and biology, 1(13): 325-373.