Remote sensing application in evaluation of soil characteristics in desert areas

Document Type : Review Article


1 Professor, Department of Remote Sensing and GIS, Faculty of Geography, University of Tehran, Iran

2 Institute of Technical and Vocational Higher Education, Agriculture Jihad, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran

3 PhD student, Department of Remote Sensing and GIS, Faculty of Geography, University of Tehran, Iran

4 Assistant professor, Department of Remote Sensing and GIS, Faculty of Geography, University of Tehran

5 Associate Professor, Department of Soil Sciences, , Faculty of Agriculture, University of Lorestan, Iran

6 MSc. Department of Remote Sensing and GIS, Faculty of Geography, University of Tehran, Iran. Email

7 MSc. Department of soil Science, Faculty of Agriculture, University of Tehran, Iran


Soil is one of the most important natural resources covering a large area of the land surface. Soil plays a vital role in biosphere processes, such as energy balance, hydrology, biochemistry, and biological productivity. It supports plants that supply foods, fibers, drugs, and some other human needs. Conversely, desert regions include about one third of earth lands and these regions have increased caused by desertification, which is one of the main three world challenges in 21st century in global scale. Thus, it is important to monitor and map soils (especially in desert regions) and understand how these resources should be utilized, managed, and conserved properly to aim at implementing ecological role. Remote sensing has improved from traditional methods for assessing soils to informative and professional rapid assessment techniques to monitor and map soils. Previous studies have shown the utility of digital aircraft and satellite remote sensor data in the pedologic and geologic mapping process. Remote sensing offers a potential to provide information about soil characteristics over large regions. However, the intent of this paper is to focus on discussion about remote sensing applications to study desert regions. In this review, at first, we would discuss about the remote sensing applications to research on soil properties including soil salinization, crusting, moisture, texture, mineralogy, approaches, and techniques used to classify soils. In second section, we would argue about constraints tied on remote sensing applications data gathering usually conducted about investigation on soil characteristics in arid and semi-arid regions.


1. Abbas, A.; Khan, S.; Hussain, N.; Hanjra, M.A.; Akbar, S. (2013). Characterizing soil salinity in irrigated agriculture using a remote sensing approach. Physics and Chemistry of the Earth. 55-57, 43-52.
2. Ackerman, S.A. (1989). Using the radiative temperature difference at 3.7 and 11 mm to track dust outbreaks. Remote Sensing of Environment. 27, 129–133.
3. Ager, C.M.; Milton, N.M. (1987). Spectral reflectance of lichens and their effects on the reflectance of rock substrates. Geophysics, 52, 898–906.
4. Alavipanah, S.K.; Matinfar, H.R.; Rafiei Emam, A.; Khodaei, K.; Hadji Bagheri, R.; Yazdan Panah (2010). A Criteria of selecting data for studding land resources, Desert. 83-102.
5. Alavipanah, S.K.; Komaki, C.B.; Goorabi, A.; Matinfar, H.R. (2007a). Characterizing Land Cover Types and Surface Condition of Yardang Region in Lut Desert (Iran) Based upon Landsat Satellite Images. World Applied Sciences Journal. 2, 212–228.
6. Alavipanah, S.K.; Saradjian, M.; Savaghebi, G.R.; Komaki, C.B.; Moghimi, E.; Reyhan, M.K. (2007b). Land Surface Temperature in the Yardang Region of Lut Desert (Iran) Based on Field Measurements and Landsat Thermal Data. J. Agric. Sci. 9, 287–303.
7. Alavipanah, S.K.; De Dapper, M.; Goossens R.; Massoudi, M. (2001). The use of TM thermal band for land cover/land use mapping in two different environmental conditions of Iran. J. Agric. Sci. Technol. 3, 27-36.
8. Aly, Z.; Bonn, F.J.; Magagi, R. (2007). Analysis of the backscattering coefficient of saltaffected soils using modelling and RADARSAT-1 SAR data. Geosci. Remote Sens. IEEE Trans. 45 (2), 332–341.
9. Amal, A.; Lalit (2013). Soil Salinity Mapping and Monitoring in Arid and Semi-Arid Regions Using Remote Sensing Technology: A Review. Advances in Remote Sensing. 2, 373-385.
10. Anderson, M.C. (2008). A thermal-based remote sensing technique for routine mapping of land-surface carbon, water and energy fluxes from field to regional scales. Remote Sensing of Environment. 112 (12), 4227–4241.
11. Anderson, M.C.; Norman, J.M.; Mecikalski, J.R.; Otkin, J.A.; Kustas, W.P. (2007a). A climatological study of evapotranspiration and moisture stress across the continental U.S. based on thermal remote sensing. I. Model formulation. J. Geophys Res, 112, 1-17.
12. Anderson, M.C.; Norman, J.M.; Mecikalski, J.R.; Otkin, J.A.; Kustas, W.P. (2007b). A climatological study of evapotranspiration and moisture stress across the continental U.S. based on thermal remote sensing. II. Surface moisture climatology. J Geophys Res., 112:D11112. doi:10.1029/2006JD007507.
13. Anguela, T.; Zribi, M.; Baghdadi, N.; Loumagne, C. (2010). Analysis of local variation of soil surface parameters with TerraSAR-X radar data over bare agricultural fields, IEEE Trans. Geosci. Remote Sens. 48 (2), 874–881.
14. Apan, A.; Kelly, R.; Jensen, T.; Butler, D.; Strong, W.; Basnet, B. (2002). Spectral discrimination and separability analysis of agricultural crops and soil attributes using ASTER imagery. 11th ARSPC. Brisbane, Australia.
15. Baghdadi, N.; Zribi, M.; Loumagne, C.; Ansart, P.; Paris Anguela, T. (2008). Analysis of TerraSARX data and their sensitivity to soil surface parameters, Remote Sensing of Environment. 112, 4370−4379.
16. Baldridge, A.M.; Hook, S.J.; Grove, C.I.; Rivera, G. (2008). The ASTER Spectral Library Version 2.0. Jet Propulsion Laboratory.
17. Bastiaanssen, W.G.M.; Noordman, E.J.M.; Pelgrum, H.; Davids, G.; Thoreson, B.P.; Allen, R.G. (2005). SEBAL model with remotely sensed data to improve water-resources management under actual field conditions. J. Irrig. Drain. Eng. 131(1), 85–93.
18. Belnap, J. (2003). The world at your feet: desert biological soil crusts. Frontiers in Ecology and the Environment. 1(4), 181-189.
19. Ben-Dor, E.; Chabrillat S.; Demattê, J.A.M.; Taylor, G.R.; Hill, J.; Whiting, M.L.; Sommer, S. (2009). Using Imaging Spectroscopy to study soil properties. Remote Sensing of Environment. 113, 38–55.
20. Ben-Dor, E. (2002). Quantitative remote sensing of soil properties. Advances in Agronomy. 75, 173–243.
21. Ben-Dor, E.; Patkin, K.; Banin, A.; Karnieli, A. (2002). Mapping of several soil properties using DAIS-7915 hyperspectral scanner data. A case study over clayey soils in Israel. International Journal of Remote Sensing, 23, 1043−1062.
22. Ben-Dor, E.; Irons, J.R.; Epema, G.F. (1999). Soil reflectance. In: Rencz, A.N. (Ed.), Remote Sensing for the Earth Sciences: Manual of Remote Sensing. Wiley, New York, 111–118.
23. Bindlish, R.; Jackson, T.J.; Gasiewski, A.J.; Klein, M.; Njoku, E.G. (2006). Soil moisture mapping and AMSR-E validation using the PSR in SMEX02. Remote Sensing of Environment. 103, 127–39.
24. Birkeland, P.W. (1999). Soils and Geomorphology. 3rd edition. New York: Oxford University Press.
25. Bouaziz, B.; Matschullat, J.; Gloaguen, J. (2011). Improved remote sensing detection of soil salinity from a semi-arid climate in Northeast Brazil. Geoscience. 343, 795–803.
26. Brown, D.J.; Shepherd, K.D.; Walsh, M.G.; Dewayne Mays, M.; Reinsch, T.G. (2006). Global soil characterization with VNIR diffuse reflectance spectroscopy. Geoderma. 132, 273–290.
27. Carter, G.A. (1993). Responses of leaf spectral reflectance to plant stress. Am. J. Bot. 80, 239–243.
28. Casa, R.; Castaldi, F.; Pascucci, S.; Palombo, A.; Pignatti, S. (2013). A comparison of sensor resolution and calibration strategies for soil texture estimation from hyperspectral remote sensing. Geoderma, 197–198, 17–26.
29. Chang, C.W.; Laird, D.A.; Mausbach, M.J.; Maurice, J.; Hurburgh, J.R. (2001). Near-infrared reflectance spectroscopy—principal components regression analyses of soil properties. Soil Science Society of America Journal, 65, 480–490.
30. Cashion, J.; Lakshmi, V.; Bosch, D.; Jackson, T.J. (2005). Microwave remote sensing of soil moisture: evaluation of the TRMM microwave imager (TMI) satellite for the Little River Watershed Tifton, Georgia. Journal of Hydrology, 307, 242-253.
31. Chang, D.H. (2003). Classification of soil texture using remotely sensed brightness temperature over the Southern Great Plains, Geoscience and Remote Sensing, IEEE Transactions, 41, 664 - 674
32. Chena, J.; Zhangb, M.Y.; Wangc, L.; Shimazakia, H.; Tamuraa, M. (2005). A new index for mapping lichen- ominated biological soil crusts in desert areas. Remote Sensing of Environment. 96, 165–175.
33. Clark, R.N.; Swayze, G.A.; Livo, K.E.; Kokaly, R.F.; Sutley, S.J.; Dalton, J.B.; McDougal, R.R.; Gent, C.A. )2003(. Imaging spectroscopy: earth and planetary remote sensing with the USGS Tetracorder and expert systems. Journal of Geophysical Research E: Planets. 108(5), 1-44.
34. Cloutis, E.A. (1996). Hyperspectral geological remote sensing: evaluation of analytical techniques. Int. J. Remote Sensing. 17, 2215-2242.
35. Cooke, R.; Warren, A.; Goudie, A. (1993). Desert Geomorphology. First Edition, UCL Press.
36. Crow, W.T.; Kustas, W.; Prueger, J.H. (2008). Monitoring root-zone soil moisture through the assimilation of a thermal remote sensing-based soil moisture proxy into a water balance model. Remote Sensing of Environment. 112, 1268-1281.
37. Csillag, F.; Pasztore, L.; Biehl, L.L. (1993). Spectral selection for characterization of salinity status of soils. Remote Sensing of Environment. 43, 231–242.
38. Darvishzadeh, R.; Skidmore, A.; Schlerf, M.; Atzberger, C.; Corsi, F.; Cho, M. (2008). LAI and chlorophyll estimation for a heterogeneous grassland using hyperspectral measurements. ISPRS J. Photogramm. Remote Sens. 63, 409–426.
39. Dehaan, R.; Taylor, G.R. (2003). Image-derived spectral endmembers as indicators of salinity. International Journal of Remote Sensing, 24, 775–794.
40. Dehaan, R.L.; Taylor, G.R. (2002). Field-derived spectra of salinized soils and vegetation as indicators of irrigation-induced soil salinization. Remote Sens. Environ. 80, 406–417.
41. Deichmann, U.; Eklundh, L. (1991). Global digital datasets for land degradation studies: A GIS approach. GRID case study series 4.
42. Ding, J.L.; W., M.C.; Tashpolat, T. (2011). Study on soil salinization information in arid region using remote sensing technique. Agricultural Sciences in China, 10(3), 404-411.
43. Dobos, E.; Micheli, E.; Baumgardner, M.F.; Biehl, L.; Helt, T. (2000). Use of combined digital elevation model and satellite radiometric data for regional soil mapping. Geoderma, 97 (3–4), 367–391.
44. Dokuchaev, V.V. (1883). Russian Chernozems. (Russkii Chernozem). Israel Prog. Sci. Trans., Jerusalem, Israel, 1967, translated by N. Kaner.
45. Dunagan, S.C.; Gilmore,M.S.; Varekamp, J.C. (2007). Effects of mercury on visible/nearinfrared reflectance spectra of mustard spinach plants (Brassica rapa P.). Environ. Pollut. 148, 301–311.
46. Duncan, J.; Stow, D.; Franklin, J.; Hope, A. (1993). Assessing the relationship between spectral vegetation indices and shrub cover in the Jornada Basin, New Mexico. International Journal of Remote Sensing. 14, 3395–3416.
47. Dwivedi, R. (1996). Monitoring of salt‐affected soils of the Indo‐Gangetic alluvial plains using principal component analysis. International Journal of Remote Sensing, 17, 1907–1914.
48. Ehleringer, J.R. and Mooney, H.A. (1978). Leaf hairs: effect on physiological activity and adaptive value to the desert shrub. Oecologia, 37, 183-200.
49. Elvidge, C.; Chen, Z. (1995). Comparison of broad-band and narrow-band red and near-infrared vegetation indices. Remote Sensing of Environment. 54, 38-48.
50. Elnaggar, A.; Noller, J. (2010). Application of remote‐sensing data and decision‐tree analysis to mapping salt‐affected soils over large areas. Remote Sensing, 2, 151–165.
51. Engman, E.T.; Chauhan, N. (1995). Status of microwave soil moisture measurements with remote sensing. Remote Sensing of Environment, 51, 189-198.
52. Farifteh, J.; Van der Meer, F.; van der Meijde, M.; Atzberger, C. (2008). Spectral characteristics of salt-affected soils: a laboratory experiment. Geoderma, 145, 196–206.
53. Farifteh, J.; Van der Meer, F.; Atzberger, C.; Carranza E.J.M. (2007). Quantitative analysis of salt-affected soil reflectance spectra: A comparison of two adaptive methods (PLSR and ANN). Remote Sensing of Environment, 110, 59–78.
54. Farifteha, J.; Farshada, T.A.; George, R.J. (2006). Assessing salt-affected soils using remote sensing, solute modelling, and geophysics. Geoderma, 130, 191–206.
55. Farifteh, J.; Farshad A. (2003). Remote sensing and modelling of topsoil properties, a clue for assessing land degradation. Proceedings of 17th WSCC, Thailand, Paper 865, 1-11.
56. Fischera, T.; Vesteb, M.; Eisele, A.; Bensc, O.; Reinhard, W.S.; Hüttlc, F. (2012). Small scale spatial heterogeneity of Normalized Difference Vegetation Indices (NDVIs) and hot spots of photosynthesis in biological soil crusts. Flora, 207, 159– 167.
57. Franklin, J.; Duncan, J.; Turner, D.L. (1993). Reflectance of vegetation and soil in Chihuahuan Desert plant communities from ground radiometry using SPOT wavebands. Remote Sensing of Environment. 46, 291–304.
58. French, A.N.; Jacobb, F.; Andersonc, M.CKustasd, W.P.; Timmermanse, W.; Gieskee, A.; Sue, Z.; Suf, H.; McCabef, M.F.; Lid, F.; Pruegerg, J.; Brunsellh N. ( 2005). Surface energy fluxes with the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) at the Iowa 2002 SMACEX site (USA). Remote Sensing of Environment. 99, 55–65.
59. Ghedira, H.; Al Rais, A.; Al Suwaidi, A. (2009). Developing a new automated tool for detecting and monitoring dust and sand storms using MODIS and METOSAT SEVERI-MSG data. IEEE, 4, 905-908.
60. Goetz, A.F. (1992). Imaging spectrometry for Earth remote sensing. In: Toselli, F., Bodechtel, J. (Eds.), Imaging Spectrometry. Basic Principles and Prospective Applications. ECSC, EEC, EAEC, Brussels and Luxemburg, 1–19.
61. Gossens, R.; Van Ranst, E. (1996). The use of RS and GIS to detect gypsiferous soils in the Ismailia province (Egypt), proceedings of the International Symposium on Soil with Gypsum. Lieida, 15-21 September, 1996. Catalonia, Spain.
62. Gossens, D.; Offer, Z.Y. (1995). Comparisons of day-time and night-time dust accumulation in a desert region. Journal of Arid Environments, 31, 253-281.
63. Graetz, R.D.; Gentle, M.R. (1982). The relationship between reflectance in the Landsat wavebands and the composition of an Australian semiarid shrub rangeland. Photogrammetric Engineering and Remote Sensing. 48, 1721–1730.
64. Green, G.M. (1986). Use of SIR-A and Landsat MSS data in mapping shrub and intershrub vegetation at Koonamore, South Australia. Photogrammetric Engineering and Remote Sensing. 52, 659–670.
65. Huete, A.R.; Tucker, C.J. (1991). Investigation of soil influences in AVHRR red and near-infrared vegetation index imagery. International Journal of Remote Sensing, 12, 1223–1242.
66. Huete, A.R. (1985). Spectral response of a plant canopy with different soil backgrounds. Remote Sensing of Environment, 17, 37–53.
67. Huete, A.R.; Jackson, R.D. (1987). Suitability of spectral indices for evaluating vegetation characteristics on arid rangelands. Remote Sensing of Environment. 23, 213– 232.
68. Huang, S.; Siegert.; F. (2006). Land cover classification optimized to detect areas at risk of desertification in north China based on SPOT vegetation imagery. Journal of Arid Environments. 67, 308–327.
69. Hunt, G.R.; Salisbury, J.W.; Lenhoff, C.J. (1972). Visible and near-infrared spectra of minerals and rocks. V. halides, phosphates, arsenates, vanadates and borates. Modern Geology, 3, 121–132.
70. Huxman, T.; Smith, M.; Fay, P.; Knapp, A.; Shaw, M.; Loik, M.; Smith, S.; Tissue, D.; Zak, J.; Weltzin, J.; Pockman, W.; Sala, O.; Haddad, B.; Harte, J.; Koch, G.; Schwinning, S.; Small, E.; Williams, D. (2004). Convergence across biomes to a common rain-use efficiency. Nature, 429, 651–654.
71. Israelevich, P.L.; Ganor, E.; Levin, Z.; Joseph J.H. (2003). Annual variations of physical properties of desert dust over Israel. Journal of Geophysical Research, 108, no. d13, 4381, doi:10.1029/2002jd003163, 2003.
72. Irons, J.R.; Weismiller, R.A.; Petersen, G.W. (1989). Soil reflectance. In: Asrar, G., (Ed), Theory and Applications of Optical Remote Sensing. Wiley Series of Remote Sens., J. Wiley & Sons, New York, NY. 66-106.
73. Jackson, T.J. (1993). Measuring surface soil moisture using passive microwave remote sensing. Hydrol Process, 7, 139–52.
74. Jackson, R.D. (1982). Canopy temperature and crop water stress. Adv Irrig, 1, 43–85.
75. Jackson, R.D. (1981). Idso SB, Reginato RJ, Pinter Jr PJ. Canopy temperature as a crop water stress indicator. Water Resour Res, 17, 1133–1138.
76. Jacobberger, P.A. (1989). Reflectance characteristics and surface processes in stabilized dune environments. Remote Sensing of Environment. 28, 287–295.
77. Jackson, T.J.; Le Vine D.M.; Swift C.T.; Schmugge, T.J.; Schiebe, F.R. (1995). Large area mapping of soil moisture using the ESTAR passive microwave radiometer in Washita ’92. Remote Sensing of Environment, 53, 27-37
78. Jenny, H. (1941). Factors of soil formation: A system of quantitative pedology. New York, NY.: McGraw Hill Book Company, Inc.
79. Jin, X.C,; Xu, Q.J,; Huang, C.Z. (2005). Current status and future tendency of lake eutrophication in China. Science in China Series C–Life Sciences. 48, 948–954.
80. Jones, C.G.; Shachak, M. (1990). Fertilization of the desert soil by rock-eating snails. Nature, 346, 839-841.
81. Jong, S.M.; Addink, E.A.; van Beek, R.; Duijsings, D. (2009). Mapping of soil surface crusts using airborne hyperspectral HyMap imagery in a Mediterranean environment. Anais XIV Simpósio Brasileiro de Sensoriamento Remoto, Natal, Brasil, 25-30 abril 2009, INPE, 7725-7732.
82. Joshi, M.; Sahai, B. (1993). Mapping of salt‐affected land in Saurashtra coast using Landsat satellite data. International Journal of Remote Sensing, 14, 1919–1929.
83. Kahn, R.; West, R.; McDonald. D.; Rheingans, B.; Mishchenko, M.I. (1997). Sensitivity of multiangle remote sensing observations to aerosol sphericity. J. Geophys. Res. 102, 16861–16870.
84. Karnieli, A.; Kidron, G.J.; Glaesser, C.; Ben-Dor, E. (1999). Spectral Characteristics of Cyanobacteria Soil Crust in Semiarid Environments. Remote Sensing of Environment. 69, 67–75.
85. Karnieli, A.; Shachak, M.; Tsoar, H.; Zaady, E.; Kaufman, Y.; Danin, A.; Porter, W. (1996). The effect of microphytes on the spectral reflectance of vegetation in semiarid regions. Remote Sensing of Environment. 57, 88–96.
86. Karnieli, A.; Tsoar, H. (1995). Satellite spectral reflectance of biogenic crust developed on desert dune sand along the Israel–Egypt border. International Journal of Remote Sensing, 16, 369–374.
87. Karnieli, K.; Sarafis, V. (1996). Reflectance spectrometry of cyanobacteria within soil crusts—a diagnostic tool. International Journal of Remote Sensing, 8, 1609– 1615.
88. Karnieli, A. (1997). Development and implementation of spectral crust index over dune sands. International Journal of Remote Sensing. 18, 1207–1220.
89. Karnieli, A.; Kidron, G.J.; Glaesser, C.; Ben-Dor, E. (1997). Spectral characteristics of cyanobacterial soil crust in the visible, near infrared and short wave infrared (400– 2500 nm) in semiarid environments. Twelfth International Conference and Workshops on Applied Geologic Remote Sensing, vol. II (pp. 417– 424). Denver, Colorado.
90. Kettles, I.M.; Rencz, A.N.; Bauke, S.D. (2000). Integrating Landsat, geologic, and airborne gamma ray data as an aid to surficial geologymapping andmineral exploration in the Manitouwadge area, Ontario. Photogramm. Eng. Remote Sens, 66 (4), 437–445.
91. Kirkby, S.D. (1996). Integrating a GIS with an expert system to identify and manage dryland salinization. Applied Geography, 16(4), 289-303.
92. Komaki, C.B.; Alavipanah, S.K. (2006). Study of Spectral Separability of the Lut Desert Classes Based on Remotely Sensed Data. Geographical Researches, 37, 13-27.
93. Lam, D.K.; Remmel, T.K.; Drezner, T.D. (2011). Tracking Desertification in California Using Remote Sensing: A Sand Dune Encroachment Approach. Remote Sens, 3, 1-13.
94. Legrand, M.; Bertrand, J.J.; Desbois, M.; Meneger, L.; Fouquart, Y. (1989). The potential of infrared satellite data for the retrieval of Saharan dust optical depth over Africa. J. Appl. Meteorol, 28, 309–318.
95. Leone, A.P.; Sommer, S.; (2000). Multivariate analysis of laboratory spectra for the assessment of soil development and soil degradation in the southern apennines. Remote Sensing of Environment. 72, 346-359.
96. Lewis, M.; Jooste, V.; de Gasparis, A.A. (2001). Discrimination of arid vegetation with airborne multispectral scanner hyperspectral imagery. IEEE Transactions on Geoscience and Remote Sensing. 39, 1471– 1479.
97. Li, F.; Crow, W.T.; Kustas, W.P. (2010). Towards the estimation root-zone soil moisture via the simultaneous assimilation of thermal and microwave soil moisture retrievals. Advances in Water Resources, 33, 201–214.
98. Lievens, H.; Verhoest, N.E.C. (2012). Spatial and temporal soil moisture estimation from RADARSAT-2 imagery over Flevoland, The Netherlands. Journal of Hydrology, 456–457, 44–56.
99. Lillesand, T.M.; Kiefer, R.W.; Chipman, J.W. (2004). Remote Sensing and Image Interpretation. John Wiley and Sons Inc., New York, USA.
100. Liu, F.; Geng, X.; Zhu, A.X.; Fraser e, W.; Waddelle, A. (2012). Soil texture mapping over low relief areas using land surface feedback dynamic patterns extracted from MODIS. Geoderma, 171–172, 44–52.
101. Liu, W.; Baret, F.; Gu, X.; Zhang, B.; Tong, Q.; Zheng, L. (2003). Evaluation of methods for soil surface moisture estimation from reflectance data, international journal of remote sensing. 24(10), 2069-2083
102. Major, D.J.; Baret, F.; Guyot, G. (1990). A ratio vegetation index adjusted for soil brightness. Int. J. Remote Sensing. 11, 727-740.
103. Mahowald, N.M.; Bryant, R.G.; del Corral, J.; Steinberger, L. (2003). Ephemeral lakes and desert dust sources, Geophys. Res. Lett., 30, 1074, doi:10.1029/2002GL016041.
104. Margate, D.E.; Shrestha, D.P. (2001). The use of hyperspectral data in identifying desert-like soil surface features in tabernas area, southeast Spain. The 22nd Asian Conference on Remote Sensing 5-9, Singapore.
105. Mashimbye, Z.E.; Cho, A.; Nell, J.P.; De, W.P. (2012). Van niekerk a. and Turner. d. P. 2012. Model-Based Integrated Methods for Quantitative Estimation of Soil Salinity from Hyperspectral Remote Sensing Data: A Case Study of Selected South African Soils. Pedosphere, 22(5), 640–649.
106. Masoud, A.A.; Koike, K. (2006). Arid land salinization detected by remotely-sensed landcover changes: A case study in the Siwa region, NW Egypt. Journal of Arid Environments, 66, 151–167.
107. Matinfar, H.R.; Alavipanah, S.K.; Zand, F.; Khodaei, K. (2013). Detection of soil salinity changes and mapping land cover types based upon remotely sensed data. Arab J Geosci, 6, 913–919.
108. Melendez-Pastor, I.; Navarro-Pedreño, J.; Koch, M.; Gómez., I. (2010). Applying imaging spectroscopy techniques to map saline soils with ASTER images. Geoderma, 158, 55–65.
109. Metternicht, G.I.; Zink, J.A. (2003). Remote sensing of soil salinity: potentials and constraints. Remote Sensing of Environment, 85, 1 –20.
110. Metternicht, G.I. (2001). Assessing temporal and spatial changes of salinity using fuzzy logic, remote sensing and GIS. Foundations of an expert system. Ecological Modelling, 144, 163-179.
111. Metternicht, G.I.; Zinck, J. A. (1997). Spatial discrimination of salt- and sodium-affected soil surfaces. International Journal of Remote Sensing, 18, 2571–2586.
112. Mougenot, B.; Pouget, M.; Epema, G. (1993). Remote sensing of salt affected soils. Remote Sens. Rev. 7, 241–259.
113. Mulder, V.L.; de Bruin, S.; Schaepman, M.E.; Mayr, T.R. (2011). The use of remote sensing in soil and terrain mapping- A review. Geoderma, 162, 1–19.
114. Munns, R.; Tester, M. (2008). Mechanisms of salt tolerance. Annu. Rev. Plant Biol, 59, 651-681.
115. Noomen, M.F.; Skidmore, A.K.; van der Meer, F.D.; Prins, H.H.T. (2006). Continuum removed band depth analysis for detecting the effects of natural gas, methane and ethane on maize reflectance. Remote Sens. Environ. 105, 262–270
116. Odeh, I.O.A.; McBratney, A.B. (2000). Using AVHRR images for spatial prediction of clay content in the lower Namoi Valley of eastern Australia. Geoderma, 97 (3–4), 237–254.
117. Offer, Z.Y.; Goossens, D. (2001). Ten years of aeolian dust dynamics in a desert region (Negev desert, Israel): analysis of airborne dust concentration, dust accumulation and the high-magnitude dust events. Journal of Arid Environments, 47, 211–249.
118. Okin, G.S.; Roberts, D.A. (2004). Remote Sensing in Arid Regions: Challenges and Opportunities. Remote Sensing for Natural Resource Management and Environmental Monitoring (S.L. Ustin, Ed.), John Wiley and Sons, New York.
119. Okin, G.S.; Roberts, D.A.; Murray, B.; Okin, W.J. (2001). Practical limits on hyperspectral vegetation discrimination in arid and semiarid environments. Remote Sensing of Environment, 77, 212–225.
120. O’Neill, A.L. (1994). Reflectance spectra of microphytic soil crusts in semiarid Australia. International Journal of Remote Sensing, 15, 675– 681.
121. Pinker, R.T.; Karnieli, A. (1995). Characteristic spectral reflectance of a semi-arid environment. International Journal of Remote Sensing. 16, 1341– 1363.
122. Price, J.C. (1980). The potential of remotely sensed thermal infrared data to infer surface soil moisture and evaporation. Water Resources Research. 16, 787-795.
123. Rao, B.; Dwivedi, R.; Venkataratnam, L.; Ravishankar, T.; Thammappa, S.; Bhargawa, G.; Singh, A. (1991). Mapping the magnitude of sodicity in part of the Indo‐Gangetic plains of Uttar Pradesh, Northern India using Landsat‐TM data. International Journal of Remote Sensing, 12, 419–425.
124. Rollin, E.M.; Milton, E.J.; Roche, P. (1994). The influence of weathering and lichen cover on the reflectance spectra of granitic rocks. Remote Sensing of Environment. 50, 194– 199.
125. Rosso, P.H.; Pushnik, J.C.; Lay, M.; Ustin, S.L. (2005). Reflectance properties and physiological responses of Salicornia virginica to heavy metal and petroleum contamination. Environ. Pollut. 137, 241–252.
126. Schlesinger, W.H.; Raikes, J.A.; Cross, A.F. (1996). On the spatial pattern of soil nutrients in desert ecosystems. Ecology. 77, 364-376.
127. Schnur, M.T.; Xie, H.; Wang, X. (2010). Estimating root zone soil moisture at distant sites using MODIS NDVI and EVI in a semi-arid region of southwestern USA. Ecological Informatics, 5, 400–409.
128. Schmidt, H.; Karnieli, A. (2000). Remote sensing of the seasonal variability of vegetation in a semi-arid environment. Journal of Arid Environments. 45, 43–59
129. Scull, P.; Franklina, J.; Chadwickb, O.A.; McArthura, D. (2003). Progress in Physical Geography, 27, 171–197.
130. Setia, R.; Lewis, M.; Marschner, P.; Raja segaran, R.; Summers, D.; Chittleborough, D. (2011). Severity of salinity accurately detected and classified on a paddock scale with high resolution multispectral satellite imagery. Land degradation & development, Published online in Wiley Online Library DOI: 10.1002/ldr.1134.
131. Shrestha, D.P.; Margate D.E.; van der Meer, H.V. (2005). Analysis and classification of hyperspectral data for mapping land degradation: An application in southern Spain. International Journal of Applied Earth Observation and Geoinformation, 7, 85–96.
132. Sohn, Y.; McCoy, R. (1997). Y Mapping desert shrub rangeland using spectral unmixing and modeling spectral mixtures with TM data Photogrammetric Engineering and Remote Sensing. 63, 707–716.
133. Sommer, S.; Hill, J.; Megier, J. (1998). The potential of remote sensing for monitoring rural land use changes and their effects on soil conditions. Agriculture Ecosystems and Environment. 67, 197-209.
134. Stoops, W.A. (1984). Soil formation processes in the west Africa Savanna landscape; implications for soil fertility and agronomic research aimed at different top sequence land types. ISNAR drattreport, July, 1984.
135. Su, H.; McCabe, M.F.; Wood, E.F.; Su, Z.; Prueger, J.H. (2005). Modelling evapotranspiration during SMACEX: comparing two approaches for local- and regional-scale prediction. J. Hydrometeorology, 6, 910–922.
136. Summers, D.; Lewis, M.; Ostendorf, B.; Chittleborough, D. (2011). Visible near-infrared reflectance spectroscopy as a predictive indicator of soil properties. Ecological Indicators, 11, 123–131.
137. Tanré, D.; Legrand, M. (1991). On the satellite retrieval of Saharan dust optical thickness over land: Two different approaches. J. Geophys. Res, 96, 5221–5227.
138. Tanre, D.; Deschamps, P.Y.; Devaux, C.; Herman, M. (1988). Estimation of Saharan aerosol optical depth from blurring effects in Thematic Mapper data. Journal of Geophysical Research. 93 (D12), 15955– 15964.
139. Tanser, F.; Palmer, A. (1999). The application of a remotely-sensed diversity index to monitor degradation patterns in a semi-arid, heterogeneous. South African Landscape Journal of Arid Environment. 43, 477–484
140. Tansey, K.J.; Edwards, M.C.; Milliington, A.C. (1998). Remote sensing of desert regions: a tool to aid research and development. Proceedings IGARSS'98, Seattle, USA.
141. Teruiya, R.K.; Paradella, W.R.; Dos Santos, A.R.; Dall'Agnol, R.; Veneziani, P. (2008). Integrating airborne SAR, Landsat TM and airborne geophysics data for improving geological mapping in the Amazon region: the Cigano Granite, Caraja's Province, Brazil. Int. J. Remote Sens. 29(13), 3957–3974.
142. Thorhaug, A.; Richardson, A.D.; Berlyn, G.P. (2006). Spectral reflectance of Thalassia testudinum (Hydrocharitaceae) seagrass: low salinity effects. Am. J. Bot. 93, 110–117.
143. Tilley, D.R.; Ahmed, M.; Son, J.H.; Badrinarayanan, H. (2007). Hyperspectral reflectance response of freshwater macrophytes to salinity in a brackish subtropical marsh. J. Environ. Qual. 36, 780–789.
144. Todd, S.W.; Hoffer, R.M. (1998). Responses to spectral indices to variations in vegetation cover and soil back- ground. Photogramm. Eng. Remote Sens. 64, 915-921.
145. Van der Kwast, J. (2009). Quantification of top soil moisture patterns: Evaluation of field methods, process-based modelling, remote sensing and an integrated approach. PhD Thesis. KNAG/Fac. Geowetenschappen, 313 p.
146. Viscarra Rossel, R.A. (2008). ParLeS: software for chemometric analysis of spectroscopic data. Chemom. Intell. Lab. Syst. 90(1), 72–83.
147. Viscarra Rossel, R.A.; Cattle, S.R.; Ortega, A.; Fouad, Y. (2009). In situ measurements of soil colour, mineral composition and clay content by vis-NIR spectroscopy. Geoderma. 150(3–4), 253–266.
148. Ustin, S.L.; Valko, P.G.; Kefauver, S.C.; Santos, M.J.; Zimpfer, J.F.; Smith, S.D. (2009). Remote sensing of biological soil crust under simulated climate change manipulations in the Mojave Desert. Remote Sensing of Environment. 113, 317-328.
149. Wagner, W.; Pathe, C.; Doubkova, M.; Sabel, D.; Bartsch, A.; Hasenauer, S.; Blöschl, G.; Scipal, K.; Martínez-Fernández, J.; Löw, A. (2008). Temporal stability of soil moisture and radar backscatter observed by the Advanced Synthetic Aperture Radar (ASAR). Sensors. 8, 1174–1197.
150. Wagner, W.; Naeimi, V.; Scipal, K.; De Jeu, R.A.M.; Martinez-Fernandez, J. (2007). Soil moisture from operational meteorological satellites. Hydrogeology Journal, 15, 121–131.
151. Wagner, W.; Lemoine, G.; Rott, H. (1999). A method for estimating soil moisture from ERS scatterometer and soil data. Remote Sensing of Environment. 70, 191–207
152. Wald, A.; Kaufman, Y.J.; Tanré, D.; Gao, B.C. (1998). Daytime and nighttime detection of mineral dust over desert suing the thermal IR. J. Geophys. Res. 103, 307–32 313.
153. Wang, Q.; Li, P.; Chen, X. (2012). Modelling salinity effects on soil reflectance under various moisture conditions and its inverse application: A laboratory experiment. Geoderma. 170, 103–111.
154. Wang, L.; QU, J.J. (2009). Satellite remote sensing applications for surface soil moisture monitoring: A review. Front. Earth Sci, 3(2), 237–247.
155. Wang, D.; Poss, J.A.; Donovan, T.J.; Shannon, M.C.; Lesch, S.M. (2002). Biophysical properties and biomass production of elephant grass under saline conditions. J. Arid Environ. 52, 447–456.
156. Wessels, D.C.J.; Van Vuuren, D.R.J. (1986). Landsat imagery—its possible use in mapping the distribution of major lichen communities in the Namib Desert, South West Africa. Madoqua. 14, 369– 373.
157. Wiegand, C.L., Rhoades, J.D., Escobar, D.E., Everitt, J.H., 1994. Photographic and videographic observations for determining and mapping the response of cotton to soil-salinity. Remote Sens. Environ. 49, 212–223.
158. Whiting, Michael L.; Ustin, Susan L. (2004). Mapping of desert biological soil crust using hyper spectral water bands. Center for Spatial Technologies and Remote Sensing, Department of Land, Air, and Water Resources, University of California, Davis, CA, USA.
159. Yamano, H.; Chen, J.; Zhang, Y.; Tamura, M. (2006). Relating photosynthesis of biological soil crusts with reflectance: preliminary assessment based on a hydration experiment. International Journal of Remote Sensing. 27, 5393-5399.
160. Zorrig, W.; Rabhi, M.; Ferchichi, S.; Smaoui, A.; Abdelly, C. (2012). Phytodesalination: a solution for salt-affected soils in arid and semi-arid regions. Journal of Arid Land Studies. 22-1, 299 -302.
161. Wang, C.; Qi, J.; Moran, S.; Marsett, R. (2004). Soil moisture estimation in a semiarid rangeland using ERS-2 and TM imagery. Remote Sensing of Environment. 90, 178 – 189
162. Wang, X.; Xie, H.; Guan, H.; Zhou, X. (2007). Different responses of MODIS-derived NDVI to root-zone soil moisture in semi-arid and humid regions. Journal of Hydrology. 340, 12– 24.
163. Weber, B.; Olehowski, C.; Knerr, T.; Hill, J.; Deutschewitz, K.; Wessels, D.C.J.; Eitel, B.; Büdel, B. (2008). A new approach for mapping of Biological Soil Crusts in semidesert areas with hyperspectral imagery. Remote Sensing of Environment. 112, 2187–2201.
164. Weng, Y.L.; Gong, P.; Zhu, Z.L. (2010). A spectral index for estimating soil salinity in the Yellow River Delta Region of China using EO-1 Hyperion data. Pedosphere. 20(3), 378–388.
165. Wuthrich, M. (1994). ERS-1 SAR compared to thermal infrared to estimate surface soil moisture. Proceedings of the 21st Conference on Agricultural and Forest Meteorology. American Meteorological Society, 197-200.
166. Zhou, D.K.; Larar, A.M.; Smith, W.L.; Liu X. (2006). Surface emissivity effects on thermodynamic retrieval of IR spectral radiance. Proc. of SPIE. 64051H, 1-8.
167. Zribi, M.; Kotti, F.; Lili-Chabaane, Z.; Baghdadi, N.; Ben Issa, N.; Amri, R. (2012). Analysis of soil texture using TERRASAR X-band SAR. IEEE International Geoscience and Remote Sensing. 7027–7030.