Comparison of selected thermal indices in the northwest of Iran

Document Type : Review Article


1 PhD Candidate, Faculty of Geographical Sciences, Kharazmi University, Tehran, Iran

2 Associate Professor, Faculty of Geographical Sciences, Kharazmi University, Tehran, Iran

3 Professor, Faculty of Geographical Sciences, Kharazmi University, Tehran, Iran

4 Professor, Albert-Ludwigs University Freiburg, 79085 Freiburg, Germany


The present study compared simple thermal indices and the indices derived from energy budget models in the northwest of Iran. For this purpose, the air temperature, solar radiation, relative humidity, cloud, cover and wind speed of 13 meteorological stations in the northwest of Iran during the  the period of 1986 to 2007 were selected for comparison. The results which were extracted using Bioklima and RayMan models, showed that the indices based on human energy balance had  a significant correlation with each other (with R2 above 90%), and the lowest R2 (70%) was related to Subjective temperature index (STI). The indices based on relatively simple formulas had low correlation with Universal Thermal Climate Index (UTCI) and Physiologically Equivalent Temperature (PET). The probable reason for this lack of conformity was the lack of radiation factor in the equations. Furthermore, UTCI was very sensitive to the changes in air temperature, solar radiation, relative humidity and wind speed, especially. In this regard, it represented the response of the human body. The findings of this analysis indicated that UTCI and PET indices were the most suitable indices which could be  used in determining  thermal comfort conditions.


1. ASHRAE, 1997. American Society of Heating, Refrigerating and Air Conditioning Engineers Handbook Fundamentals Volume, Chap. 8. Thermal Comfort, 8.1–8.28.
2. Basarin, B., Krzic, A., Lazic, L., Lukic, T., Dordevic, J., Petrovic1, B.J., Copic, S., Matic, D., Hrnjak, I., Matzarakis, A., 2014. evaluation of bioclimate conditions in two special nature reserves in Vojvodina (northern Serbia). Carpathian journal of earth and environmental sciences, 9 (4): 93-108.
3. Bedford, T., 1951. Equivalent temperature, what it is, how it's measured. Heating, Piping, Air conditioning.
4. Blazejczyk, K., 1994. New climatological- and -physiological model of the human heat balance outdoor (MENEX) and its applications in bioclimatological studies in different scales. ZeszytyIGiPZ PAN 28:27–58.
5. Blazejczyk, K., 2005. MENEX_2005-the updated version of man-environment heat exchange model.
6. Blazejczyk K, Epstein Y, Jendritzky G, Staiger H, Tinz B (2012) Comparison of UTCI to selected thermal indices. International journal of biometeorology 56(3):515-535.
7. Bleta, A., Nastos, P.T., Matzarakis, A., 2014. Assessment of bioclimatic conditions on Crete Island, Greece. Regional Environmental Change 14(5):1967-1981.
8. Brager, G.S., de Dear, R.J., 1998. Thermal adaptation in the built environment: a literature review. Energy and buildings 27(1):83-96.
9. Bröde, P., Blazejczyk, K., Fiala, D., Havenith, G., Holmer, I., Jendritzky, G., Kuklane, K., Kampmann, B. 2013. The universal thermal climate index UTCI compared to ergonomics standards for assessing the thermal environment. Industrial Health 51(1):16-24.
10. Cheung, C.S.C., Hart, M.A., 2014. Climate change and thermal comfort in Hong Kong. International journal of biometeorology, 58(2):137-148.‏
11. De Freitas, C.R., Grigorieva, E.A., 2015. A comprehensive catalogue and classification of human thermal climate indices. International journal of biometeorology 59(1): 109-12.
12. Driscoll DM, 1992. Thermal Comfort Indexes. Current Uses and Abuses. Nat. Weather Digest, 17 (4):33-38.
13. Dufton A.F., 1932. Equivalent temperature and its measurement, B R Technical Paper 13. HMSO.
14. Dufton, A.F. 1933. The use of kata thermometers for the measurement of equivalent temperature. J Hygiene, Camb: 33:349.
15. Eludoyin O.M., 2014. A Perspective of the Diurnal Aspect of Thermal Comfort in Nigeria. Atmospheric and Climate Sciences, 4(04):696-709.
16. Eludoyin, O.M., Adelekan, I.O., Webster, R., Eludoyin, A.O., 2014. Air temperature, relative humidity, climate regionalization and thermal comfort of Nigeria. International Journal of Climatology 34(6): 2000-2018.
17. Epstein, Y., Moran, D.S., 2006. Thermal Comfort and the Heat Stress Indices. Industrial Health, 44:388–398.
18. Falconer, R., 1968. Windchill, a useful wintertime weather variable. Weather 21(6):227–229.
19. Fanger, P.O., 1970. Thermal Comfort. Analysis and Application in Environment Engineering. Danish Technical Press, Copenhagen.
20. Farajzadeh, H., Matzarakis, A., 2009. Quantification of climate for tourism in the northwest of Iran. Meteorological Applications 16(4):545-555.
21. Farajzadeh, H., Matzarakis, A., 2012. Evaluation of thermal comfort conditions in Ourmieh Lake, Iran. Theoretical and Applied Climatology 107(3-4):451-45.
22. Fiala, D., Havenith, G., Broede, P., Kampmann, B., Jendritzky, G., 2012. UTCI-fiala, multi-node model of human heat transfer and temperature regulation. Int J Biometeorol 56(3):429–441.
23. Fiala, D., Lomas, K.J., Stohrer, M., 2001. Computer prediction of human thermoregulatory and temperature responses to a wide range of environmental conditions. Int J Biometeorol 45:143–159.
24. Fröhlich, D., Matzarakis, A., 2015. A quantitative sensitivity analysis on the behaviour of common thermal indices under hot and windy conditions in Doha, Qatar. Theoretical and Applied Climatology, 1-9.
25. Gagge, A.P., Fobelets, A.P., Berglund, L.A., 1986. standard predictive index of human response to the thermal environment. ASHRAE Trans. (United States), 92(CONF-8606125).
26. Gagge, A., 1971. An effective temperature scale based on a simple model of human physiological regulatory response. ASHRAE Trans 77(1):247-262.
27. Givoni, B., 1976. Man, Climate and Architecture. Appl. SCI. Publishers, London, 483.
28. Gulyas, A., Matzarakis, A., 2007. Selected examples of bioclimatic analysis applying the physiologically equivalent temperature in Hungary. ActaClimatologicaEtChorologica 40(41):37-4.
29. Havenith, G., Fiala, D., Błazejczy, K., Richards, M., Brode, P., Holmer, I., Rintamaki, H., Benshabat, Y., Jendritzky, G., 2012. The UTCI-clothing model. Int J Biometeorol 56(3):461–470.
30. Höppe, P.R., 1997. Aspects of human biometeorology in past, present and future. Int J Biometeorol 40(1):19–23.
31. Höppe, P.R., 1999. The physiological equivalent temperature- a universal index for the biometeorological assessment of the thermal environment. Int J Biometeorol 43:71-75.
32. Houghten, F.C., Yagloglou, C.P., 1923. Determination of the comfort zone. ASHVE Transactions, 29, 361.
33. ISO TR 11079, 1993. Evaluation of cold environments. Determination of required clothing insulation, International Organisation of Standardization,Geneva.
34. IUPS, 2003. Glossary of terms for thermal physiology. Third Edition, revised by The Commission for Thermal Physiology of the International Union of Physiological Sciences. Journal of Thermal Biology. 28(1):75-106.
35. Jendritzky, G., de Dear, R., Havenith, G., 2012. UTCI—Why another thermal index? International journal of biometeorology 56(3):421-428.
36. Landsberg, H.E., 1972. The Assessment of Human Bioclimate, a Limited Review of Physical Parameters. World Meteorological Organization, Technical Note (123), WMO(331), Geneva.
37. Masterson, J., Richardson, F.A., 1979. Humidex: a Method of Quantifying Human Discomfort Due to Excessive Heat and Humidity. Environment Canada, Downsview, Ontario.
38. Matzarakis, A., Endler, C., 2010. Climate change and thermal bioclimate in cities: impacts and options for adaptation in Freiburg, Germany. International journal of biometeorology, 54(4):479-483.
39. Matzarakis, A., Mayer, H., 1997. Heat stress in Greece. International journal. Biometeorol. 41: 34-39.
40. Matzarakis, A., Mayer, H., Iziomon, M.G., 1999. Applications of a universal thermal index: physiological equivalent temperature. International Journal of Biometeorology, 43(2):76-84.
41. Matzarakis, A., Rutz, F., Mayer, H., 2000. Estimation and calculation of the mean radiant temperature within urban structures. WCASP-50, WMO/TD No. 1026, 273-278.
42. Matzarakis, A., Rutz, F., Mayer, H., 2007. Modelling Radiation fluxes in simple and complex environments–application of the RayMan model. International Journal Biometeorol, 51:323-334.
43. Matzarakis, A., Rutz, F., Mayer, H., 2010. Modelling radiation fluxes in simple and complex environments: basics of the RayMan model. Int J Biometeorol 54(2):131–139.
44. Matzarakis, A., 2007. Climate, thermal comfort and tourism. Climate Change and Tourism-Assessment and Coping Strategies, 139-154.
45. Matzarakis, A., Nastos, P.T., 2011. Human-Biometeorological assessment of heat waves in Athens. Theoretical and applied climatology 105(1-2): 99-106.
46. Mayer, H., Höppe, P. 1987. Thermal comfort of man in different urban environments. TheorApplClimatol 38:43-49.
47. Missenard, F.A., 1933. Température effective d’une atmosphere Généralisationtempératurerésultante d’un milieu. EncyclopédieIndustrielleet Commerciale, Etude physiologique et technique de la ventilation. Librerie de l’Enseignement Technique, Paris 131-18.
48. Nastos, P.T., Matzarakis, Α., 2006. Weather impacts on respiratory infections in Athens, Greece. Int. J. Biometeorol. 50:358-369.
49. Nastos, P.T., Matzarakis, Α., 2008. Variability of tropical days over Greece within the second half of the twentieth century. Theor. Appl. Climatol. 93:75-89.
50. Nastos, P.T., Matzarakis, A., 2012. The effect of air temperature and human thermal indices on mortality in Athens, Greece. Theoretical and Applied Climatology, 108(3-4):591-599.
51. Novak, M., 2013. Use of the UTCI in the Czech Republic. Geogr Pol 86:21-28.
52. Nowosad, M., Rodzik, B., Wereski, S., Dobek, M., 2013. The UTCI index in Lesko and Lublin and its circulation determinants. GeographiaPolonica 86(1):29-36.
53. Parsons, K., 2014. Human thermal environments: the effects of hot, moderate, and cold environments on human health, comfort, and performance. Crc Press.
54. Parsons, K.C., 2003. Human thermal environments: the effects of hot, moderate, and cold environments on human health, comfort and performance. Taylor and Francis, London, New York, 527.
55. Shady, M.R., 2013. Human thermal comfort and heat stress in an outdoor urban arid environment a case study. Advances in Meteorology.
56. Siple, P., Passel, C.F., 1945. Measurements of dry atmospheric cooling in subfreezing temperatures. Proc Am PhilosSoc 89:177-199.
57. Spagnolo, J.C., de Dear, R.J., 2003. A human thermal climatology of subtropical Sydney. Int J Climatol 23:1383–1395.
58. Stolwijk, J.A.J., Hardy, J.D. 1977. Control of body temperature. In: Douglas HK (Ed) Handbook of physiology, section 9, reactions to environmental agents. Bethesda, MD. Am Physiol Soc:45–69.
59. Tejeda-Martinez, A., García-Cueto, O.R., 2002. A comparative simple method for human bioclimatic conditions applied to seasonally hot/warm cities of Mexico. Atmósfera, 15(1), 55-66.
60. Tseliou, A., Tsiros, I.X., Lykoudis, S., Nikolopoulou, M., 2010. An evaluation of three biometeorological indices for human thermal comfort in urban outdoor areas under real climatic conditions. Building and Environment, 45(5):1346-1352.
61. Urban, A., Kysely, J., 2014. Comparison of UTCI with other thermal indices in the assessment of heat and cold effects on cardiovascular mortality in the Czech Republic. International Journal of Environmental Research and Public Health, 11(1), 952-967.
62. VDI, 1998. Methods for the human-biometerological assessment of climate and air hygiene for urban and regional planning. Part I: climate, VDI guideline 3787. Part 2. Beuth, Berlin.
63. Vernon, H.M., Warner, C.G., 1932. The influence of the humidity of the air on capacity for work at high temperatures. J Hyg 32:431–462.
64. Weihs. P., Staiger, H., Tinz, B., Batchvarova, E., Rieder, H., Vuilleumier, L., Maturilli, M., Jendritzky, G., 2012. The uncertainty of UTCI due to uncertainties in the determination of radiation fluxes derived from measured and observed meteorological data. International journal of biometeorology 56(3):537-555.
Yaglou C.P., Minard, D., 1957. Control of heat casualties at military training centers. Am MED Assoc Arch IND Health 16:302–316.